Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Cell Biol ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37777392

RESUMO

Receptor tyrosine kinase (RTK)-mediated signal transduction is fundamental to cell function and drives important cellular outcomes which, when dysregulated, can lead to malignant tumour growth and metastasis. The initiation of signals from plasma membrane-bound RTKs is subjected to multiple regulatory mechanisms that control downstream effector protein recruitment and function. The high propensity of RTKs to condense via liquid-liquid phase separation (LLPS) into membraneless organelles with downstream effector proteins provides a further fundamental mechanism for signal regulation. Herein we highlight how this phenomenon contributes to cancer signalling and consider the potential impact of LLPS on outcomes for cancer patients.

2.
Mol Cell ; 82(6): 1089-1106.e12, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35231400

RESUMO

The recruitment of signaling proteins into activated receptor tyrosine kinases (RTKs) to produce rapid, high-fidelity downstream response is exposed to the ambiguity of random diffusion to the target site. Liquid-liquid phase separation (LLPS) overcomes this by providing elevated, localized concentrations of the required proteins while impeding competitor ligands. Here, we show a subset of phosphorylation-dependent RTK-mediated LLPS states. We then investigate the formation of phase-separated droplets comprising a ternary complex including the RTK, (FGFR2); the phosphatase, SHP2; and the phospholipase, PLCγ1, which assembles in response to receptor phosphorylation. SHP2 and activated PLCγ1 interact through their tandem SH2 domains via a previously undescribed interface. The complex of FGFR2 and SHP2 combines kinase and phosphatase activities to control the phosphorylation state of the assembly while providing a scaffold for active PLCγ1 to facilitate access to its plasma membrane substrate. Thus, LLPS modulates RTK signaling, with potential consequences for therapeutic intervention.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 11 , Transdução de Sinais , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Tirosina/metabolismo , Domínios de Homologia de src
3.
J Cell Sci ; 131(20)2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30254024

RESUMO

STX19 is an unusual Qa-SNARE as it lacks a C-terminal transmembrane domain. However, it is efficiently targeted to post-Golgi membranes. Here, we set out to determine the intracellular localisation of endogenous STX19 and elucidate the mechanism by which it is targeted to membranes. We have found that a pool of STX19 is localised to tubular recycling endosomes where it colocalises with MICAL-L1 and Rab8 (which has Rab8a and Rab8b forms). Using a combination of genetic, biochemical and cell-based approaches, we have identified that STX19 is S-acylated at its C-terminus and is a substrate for several Golgi-localised S-acyltransferases, suggesting that STX19 is initially S-acylated at the Golgi before trafficking to the plasma membrane and endosomes. Surprisingly, we have found that S-acylation is a key determinant in targeting STX19 to tubular recycling endosomes, suggesting that S-acylation may play a general role in directing proteins to this compartment. In addition, S-acylation also protects STX19 from proteosomal degradation, indicating that S-acylation regulates the function of STX19 at multiple levels.This article has an associated First Person interview with the first author of the paper.


Assuntos
Acilação/genética , Transporte Proteico/genética , Proteínas Q-SNARE/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...